CO.53
POPULATION STRUCTURE OF TWO RABIES HOSTS IN ALASKA
Clement CI, Himschoot E1, Goldsmith EW1, Hundertmark KJ1, Hueffer K1 – 1University of Alaska Fairbanks

Rabies, is widespread in arctic and red foxes in Northern and Western Alaska, but not endemic in Interior Alaska. Areas with endemic rabies overlap with the habitat of the Arctic fox while regions solely inhabited by the red fox are considered free of endemic rabies. It is therefore not known if red foxes serve as competent long-term reservoirs for rabies or support only spill over infections. Three strains of rabies virus are present in Alaska with distinct geographic distribution. Furthermore climate change is expected to alter the distribution of these two species in Alaska, expanding the range of the red fox into the historic habitat of the arctic fox. We assessed the population structure of the two major hosts in Alaska, red and arctic foxes in the context of rabies strain distribution in Alaska. In contrast to previous studies on population structure of Arctic foxes in North America, we found significant structure in the population of arctic foxes, which correlates with the phylo-geographic distribution of rabies strains in Alaska. Red foxes also showed evidence of only limited gene flow between regions of Alaska.

CO.54
THE GERMAN RACCOON (PROCYON LOTOR) POPULATION AS POTENTIAL RABIES RESERVOIR SPECIES
Vos A1, Finke S2, Habla C1, Freuling C1, Teifke J1, Köllner B2, Müller T2 – 1IDT Biologika GmbH, 2Friedrich Loeffler Institute – Federal Research Institute for Animal Health

Until recently, the red fox (Vulpes vulpes) was considered the only reservoir species for terrestrial wildlife rabies in Europe. However, since the late 1980s another host species has emerged in North- and East Europe; the raccoon dog (Nyctereutes procyonoides). Interestingly, several other potential rabies reservoir species occur in Europe but without evidence that these animals play any role in the spread of the disease; golden jackals (Canis aureus) in Southeast Europe, the small Indian mongoose (Herpestes urupunctatus) inhabiting parts of the Adriatic coastal region, and the raccoon (Procyon lotor) in most parts of Europe. Especially in (semi-) urban areas in Germany, extreme high raccoon population densities have been observed (approx. 100 animals/km²). To investigate the possibility that raccoons in Germany could become a reservoir species in case of re-emergence of rabies in Germany the susceptibility of the ’local’ raccoon population was investigated. Wild caught animals were inoculated with the most likely lyssavirus variants to infect the German raccoon population. It was shown that the German raccoons were fully susceptible for a dog and raccoon rabies virus (RABV) variant. Five of 6 raccoons inoculated with a fox RABV isolate showed subsequent clinical signs. In contrast to foxes, none of the infected raccoons succumbed to rabies after infection with European Bat Lyssavirus Type 1 (EBLV-1); although all these raccoons seroconverted. The most likely event that a German raccoon will come in contact with a lyssavirus is through contact with an infected bat. It can therefore be a reassuring thought that based on the results of this study raccoons are highly refractory to EBLV-1 virus infection. The highest risk that the raccoon population will become infected with rabies is by re-emergence of this disease by accidental importation of dog rabies. Although the immediate risk may not seem high it must be stressed that no experience and no tools are readily available to control a rabies outbreak among raccoons in Germany. The study was conducted as part of the Lyssavirus Research Network and sponsored by the German Federal Ministry of Education and Research (grant nr. 01KI166A).

CO.55
RABIES CONTROL PROGRAMMES IN THE BALKAN REGION: ACHIEVEMENTS AND PERSPECTIVES IN MACEDONIA
Cluquet FI, Mrenoski S1, Davcheva K1, Kirandjiski T1, Nakova E1 – 1Nancy laboratory for rabies and wildlife, France, 1Faculty of Veterinary Medicine in Skopje – Macedonia, 2Agriconsulting Europe SA – Macedonia, 2Food & Veterinary Agency – Macedonia

Through the Instrument and Pre-Accession Assistance, European Union provides funding to support the control and eradication of classical swine fever and rabies in seven candidate or potential candidate countries of the Western Balkans, where the main reservoir and vector of rabies is the red fox (Vulpes vulpes). Most of those countries have reinforced measures aiming to control the disease and have initiated oral vaccination programmes against rabies which started in Kosovo in spring 2010. The project was initiated in Macedonia in August 2010 and the first objective was to improve passive surveillance and reporting through enhancing public awareness about the risks of the disease and training for stakeholders. Macedonia is a 25,713 km2 country bordered by four infected countries. In Macedonia, there had been no cases reported since 2000. The first oral vaccination campaigns were implemented in spring and autumn 2011 in the whole country using SADB19 vaccines and aerial distribution. The first case of rabies was detected in July 2011 on a fox in the centre of the country. Eight other cases have been reported in the centre, in the east and in the south parts of Macedonia. Several cases have been isolated at close proximity with Bulgaria and Greece, requiring the implementation of adequate measures in those countries. The last case was recorded in a cat in March 2012. The number of samples and of species analysed in 2011 was significantly increased compared to that of 2009 and 2010. This reflects a higher level of awareness of rabies among hunters, general public and professionals involved in rabies control activities as well as increased quality of the rabies surveillance and monitoring. The efficacy of the campaigns was assessed through monitoring healthy foxes (with active participation of hunters) in all vaccinated areas and revealed a very high percentage of bait uptake (estimated at 91%) and an rabies antibody response of foxes at 59%. The genetic characterization of eight strains isolated in Macedonia has been undertaken to identify rabies variants circulating in the country. The tested isolates were resolved in the East European group with a high nucleotide identity of the nucleoprotein gene found for all isolates, suggesting wildlife movements of rabies in the region. The multi annual rabies control programme will be shortly described (rabies surveillance network, planning, organisation, implementation and evaluation of the campaigns, laboratory investigations) as well as achievements done in the Balkan region. Perspectives for strengthening collaboration with the neighbouring countries for the next years will also be discussed.

CO.56
RESULTS OF THE FIRST ONRAB® SAFETY AND IMMUNOGENICITY FIELD TRIAL IN RACCOONS IN THE U.S.
Chipman R1, Vercauteren K2, Nelson K1, Algeo T1, Slate D1 – 1USDA, APHIS – Wildlife Services, 2USDA, APHIS, WS – National Wildlife Research Center
CO.57
PREFERENCES OF SELECT ATTRACTANTS IN THE COATING OF ONRAB VACCINE BAITS BY RABIES RESERVOIR SPECIES

Johnson SR1, Berentsen AR1, Leland B2, Oertli E3, VerCauteren K3 – USDA-APHIS-WS, National Wildlife Research Center, USDA-APHIS-Wildlife Services, Texas Department of State Health Services

Rabies control managers and researchers in the United States are assessing how the Canadian vaccine ONRAB® may perform if integrated into the United States oral rabies vaccination (ORV) program. A measurement of success of any ORV program is bait uptake by target species. The attractant used in the bait matrix surrounding a vaccine influences bait uptake and vaccination rate. Our objective is to determine which flavor of attractant in the ONRAB® coating is the most preferred by rabies reservoir species in the field. In Texas (TX) we are evaluating four attractants (sweet, fish, egg, and cheese) in areas inhabited by raccoons (Procyon lotor), skunks (Mephitis mephitis), foxes (Urocyon cinereoargenteus), and coyotes (Canis latrans). In Puerto Rico (PR), we are comparing the preference of mongoose (Herpestes auropunctatus) for cheese, coconut, and fish attractants. We monitored bait stations with animal-activated cameras and regular checks of bait status (untouched, disturbed, and removed). In TX, we offered 540 baits of which 102 were removed, with cheese and fish most often removed (both 25%) followed by egg (21%) and then sweet (15%) and unflavored controls (14%). Image scoring from camera data is underway. In PR, mongoose removed baits on 38 of 343 occasions. Though all data are not yet fully analyzed, it appears mongoose prefers cheese, followed closely by fish. Findings in both TX and PR are suggesting that sweet flavors are least attractive to raccoons reservoir species. To confidently state which attractants will likely perform the best, we need to complete the analyses of these data and do more extensive trials, especially in raccoon habitat in the eastern United States.

CO.58
EVALUATION OF NON-TARGET ANIMAL EXPOSURE TO HUMAN ADENOVIRUS RECOMBINANT ORAL RABIES VACCINE - OHIO 2012


Oral Rabies Vaccination (ORV) is the primary management practice for controlling wildlife rabies in the United States, particularly among raccoons and foxes. Two ORV bait designs are primarily utilized for the distribution of vaccinia rabies glycoprotein (VRG) vaccine: a fish meal polymer block and a coated sachet. A primary public health concern related to ORV bait distribution is non-target contact between the ORV and humans and domestic pets. The VRG virus strain used in ORV is attenuated in mice, but human percutaneous exposure to ruptured sachets has resulted in localized vaccinia virus infection in very rare cases. Recently, a new recombinant human adenovirus ORV (AdRG) has been developed. This vaccine is incorporated in ultralight bait which has not previously been used in the United States. Surveillance for human contact is important, particularly among young children that may have contact with the bait, due to their lower prevalence of prior exposure and immunity to human adenoviruses. To evaluate potential differences in contact rates between the VRG and AdRG bait types, the Ohio Department of Health, and USDA/WS will conduct an investigation during ORV baiting in Northeastern Ohio in August 2012. The focus of this investigation will be to ensure that public health programs are in place to capture events of human and domestic animal bait contact, ensure appropriate protocols are in place in case of a severe adverse event from a bait contact, and evaluate whether the AdRG vaccine bait matrix is associated with a different human detection rate compared to bait types used for distributing VRG. Updated guidelines related to appropriate management of potential contacts with AdRG baits during ORV activities may be developed based on findings from this investigation.