the correct realization e interpretation of these essays. The elevated temperatures, as well as those that register in the provinces of the north of Argentina, can precipitate the deterioration of the cadavers of the animals investigated, provoking as the results of the brain present a link to a new face towards an advanced stage of decomposition. These conditions affect the sensitivity of the results of the diagnostic tests performed that they provoke the degradation of the structure of the rabies virus and the production of toxins bacterial. Assuming, however, that the samples of RABV do not maintain in a low temperature below -70°C, it will in a rapid and substantial way its viability that has provoked the loss of many collections of RABV in laboratories that care for the infrastructure adequate. We evaluated a technique of RT-PCR of a sample for the diagnostic and characterization molecular in samples of the brain in an advanced stage of decomposition and in the tissues of the animal. We took a group of 10 rabbits abandoned in the raton lactante, of the variants of major circulation in our country, 3 cerebral dog bodies with dissection control and 14 cepas antigüias. The antigenic analysis was realized by the technique of immunofluorescence indirect using a panel of 19 antígenos monoclonales (CDCA, USA). The characterization molecular of a region of 19 nucleotides equivalent to the nucleoprotein was analyzed and it was identified an arbovirus filogenético. The characterization antigenic and molecular corresponded in all the samples. In this study it was possible to characterize the molecular characterization of the samples of major circulation in Argentina, in samples in advanced dissection and cepas antigüias in direct form, with a technique that utilized a small porción del gen of the nucleoprotein viral of the 100% of the samples.

PT.041
ANTIGENIC VARIANTS OF RABIES VIRUS IN VENEZUELA.
2000-2012
PEREZ M1, HIDALGO M1, BOYER L1 – ‘National Institute of Agricultural Research (INIA) – Rabies Laboratory

Rabies is a fatal zoonotic disease, caused by the rabies virus, the prototype of the genus Lyssavirus of the family Rhabdoviridae, with a single-stranded negative-sense RNA genome, surrounded by a bullet shaped capsid. In Venezuela for many years has rabies has occurred in endemic and epidemic form, constituting a socioeconomic problem that affects human health and causes losses in livestock. It is distributed throughout the country. The detection of rabies antigen and antigenic characterization of field strains allowed the identification of animal species that serves as a reservoir responsible for an outbreak of rabies in a given area. The aim of this study was to perform the antigenic characterization of 34 fields isolates of rabies virus from different animal species, states, years and to know which antigenic variants were circulating in our country. The detection of rabies antigen was performed by direct immunofluorescence test of nerve tissue imprints of animals with symptoms of the disease. The viral amplification was performed by inoculation in suckling mice. Antigenic characterization was performed by indirect immunofluorescence imprisons brain of mice inoculated with field strains that had obvious symptoms of the disease. Only variants 1 and 3 were found. It was concluded that the antigenic variant 1 (canine) was located exclusively in Zulia State, while variant 3 (vampire) was present in several states, so the common vampire bat Desmodus rotundus was the main transmitter of rabies for livestock in that period.

Acknowledgement: National Institute of Agricultural Research (INIA), National Institute of Integral Agricultural Health (INSAI).


PT.042
EXPERIMENTAL ANTIVIRAL THERAPY AGAINST DIFFERENT RABIES VIRUS LINEAGES USING TRANSMISSION WITH ANTI-RABIES ANTIBODIES
Castilho JG3, Batista HBCR1, Rodrigues AC1, Carneiro Jr P1, Oliveira RN1, Silva ACR2, Caporale GMM1, Carrieri ML1, Kotait I1, Brandão PE1 – 1Instituto Pasteur – Virologia, 2Instituto Pasteur – Imunologia, 3Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo

The aim of this study was to develop a new mechanism for antiviral therapy against rabies based on the introduction by transfection with a cationic reagent (lipofectamine 2000) of antibodies into neuronal cells infected with the rabies virus. N2A cells were infected using 96-well plates and different viral concentrations (0.1, 1.0, 10 and 100 TCID50) of three lineages of rabies virus circulating in Brazil (dog, Desmodus rotundus and Eptesicus furinalis). After incubation for 24 h, the cells were transfected with antivirale virus polyclonal antibodies and lipofectamine 2000. These cells made up the treatment group (TG). The cells in the negative control group (CG) were treated with only Minimum Essential Medium. After 11 hours, the plates were fixed with 80% aceton and analyzed by direct immunofluorescence using a fluorescein isothiocyanate conjugated antineucleopasid antibodies. The effectiveness of the transfection and subsequent neutralization of the virus was determined by calculating the percentage inhibition of fluorescent foci. This was done by measuring the difference in the number of fluorescent foci in the two groups (CG and TG). The results show that for lower viral concentrations (0.1 and 1.0 TCID50), viral inhibition was 100% for all the lineages tested. When higher virus concentrations were used (10 and 100 TCID50), inhibition varied according to the viral load and lineage of rabies virus used. With an infectious dose of TCID50, inhibition varied from 83.7% to 100% for the lineages tested. With a 100 TCID50 dose, inhibition was 90.7% for the D. rotundus lineage, 90.3% for the dog lineage and 67.0% for the E. furinalis lineage. It can be concluded from these results that, irrespective of the viral load the patient is exposed to, transfection with antibodies is an efficient mechanism for use in antiviral therapy against rabies in cases where the transmitter is the hematophagous bat D. rotundus or the dog as inhibition only varied from 89.2% to 100% when these lineages were used. However, if the patient has been exposed to the lineages associated with the insectivorous bat E. furinalis, inhibition varies with viral load. These findings show that transfection with antibodies is a promising mechanism that could be used to develop an antiviral therapy against rabies. Further studies are required to assess the efficiency of transfection with antibodies in vivo. Financial Support: FAPESP

PT.043
CLASSIFICATION AND POSITIVITY RATE OF BATS RECEIVED FOR RABIES DIAGNOSIS
Lima JYO1, Scheffer KC1, Achkar SM1, Kotait I1, Carrieri ML1 – Instituto Pasteur

The diversity of bat species in Brazil is great, and there are 172 species distributed among nine families. The Phyllostomidae family is the most numerous, followed by Vespertilionidae and Molossidae. According to feeding habits, the majority of bats are insectivores, followed by frugivorous, nectarivorous, carnivorous and hematophagous. As these animals are considered reservoirs of rabies virus it is essential to correctly identify the species and knowledge of the